

INITIATING SESSION...

DSC Cyber DivisionDSC Cyber Division

 DSC Cyber DSC Cyber DSC Cyber DSC Cyber

Let’s Hack
with

Welcome to CyberTuesday
(DSC Cyber)

 Web Application
 security.

 CHECKLIST
 Insecure coding
 CSRF
 Cross site scripting
 Login Bruteforce
 SQL injection
 IDOR
 Information disclosure

 Ha kc _F kor s
 @Steve
 @infosecgirlpesh
 @Osir
 @D_Captainkenya

Liability Disclaimer
 This session contains

potentially damaging or
dangerous materials.

 Misuse of information
presented here can result in
criminal charges.

 The authors at DSC_Cyber
will not be held responsible
for actions.

 Any actions or activities
related to the material
contained within this session
are solely your responsibility.

1. Insecure Coding

Javascript, PHP Snippets

Insecure Coding

 Javascript, MD5, ROT13
 Js Snippet (path injection and file deletion)
 PHP Snippet (Input validation > sqli)
 Django Snippet

 Don’t write code that does just what you want, it
should do it, THE RIGHT WAY.

Insecure Coding cont…(Path
injection, file deletion)

Insecure Coding cont…
(Unsanitized user input >SQLi)

2. Cross Site Request Forgery
(CSRF)

Cross Site Request Forgery

CSRF vulnerabilities may exist when
applications rely on HTTP cookies to identify
the user that has issued a request.
It may be possible for an attacker to create a
malicious web site that forges a cross-domain
request to the vulnerable application.

CSRF cont...

CSRF cont…

Conditions for CSRF to occur:

 The application relies on HTTP cookies or
Basic Authentication to identify users.

 The request performs some relevant privileged
action within the application.

 No unpredictable parameters required to
construct a request that performs the action.

3. Cross site scripting (XSS)

Reflected and Stored

Cross Site Scripting(Reflected)

 Reflected cross-site scripting vulnerabilities arise when data is
copied from a request and echoed into the application's
immediate response in an unsafe way.

 An attacker can use the vulnerability to construct a request that,
if issued by another application user, will cause JavaScript code
supplied by the attacker to execute within the user's browser in
the context of that user's session with the application.

 The attacker-supplied code can perform a wide variety of
actions, such as stealing the victim's session token or login
credentials, performing arbitrary actions on the victim's behalf,
and logging their keystrokes.

XSS(stored) cont..

 Stored XSS vulnerabilities arise when user
input is stored and later embedded into a
response within a part of the DOM that is then
processed in an unsafe way by a client-side
script.

 An attacker can leverage the data storage to
control a part of the response (for example, a
JavaScript string) that can be used to trigger
the XSS vulnerability.

XSS cont...

 XSS: Remediation

Input should be validated as strictly as possible.
For example,

 personal names should consist of alphabetical and a
small range of typographical characters, and be
relatively short;

 a year of birth should consist of exactly four numerals;
 email addresses should match a well-defined regular

expression.
> Input which fails validation should be rejected

4. Login Bruteforce

Weak credentials

Weak Credentials

A weak password is short, common, a
system default, or something that could be
rapidly guessed by executing a brute force
attack.

 This is by using a subset of all possible
passwords, such as words in the
dictionary, proper names, words based on
the user name or common variations on
these themes.

Weak Credentials cont...

Weak Credentials:Remediation

 Change default Login credentials.
 Enforce a strong password policy.
 Don't permit weak passwords or

passwords based on dictionary words.

5. SQL Injection

Error Based

SQL injection

 SQL injection vulnerabilities arise when user-
controllable data is incorporated into database SQL
queries in an unsafe manner.

 An attacker can supply crafted input to break out of the
data context in which their input appears and interfere
with the structure of the surrounding query.

 A wide range of damaging attacks can often be
delivered via SQL injection, including reading or
modifying critical application data, interfering with
application logic, escalating privileges within the
database and taking control of the database server.

SQLi cont...

SQLi Remediation

 Use parameterized queries (also
known as prepared statements) for all
database access.

 Always perform Input validation

6. Insecure Direct Object
Referencing (IDOR)

Insecure direct object referencing

 An IDOR occurs when a developer
exposes a reference to an internal
implementation object, such as a file,
directory, database record, or key, as a
URL or form parameter.

 An attacker can manipulate direct object
references to access other objects without
authorization, unless an access control
check is in place.

IDOR cont...

IDOR: Remediation
 Most frameworks now come with built-in

methods to avoid these vulnerabilities. Use
these built-in tools to improve the security of the
web app.

 Ensure no data is transmitted in cleartext.
Users can hash passwords or ids and then
transmit the data.

 Ensure no ids are generated iteratively, rather
they should be generated randomly. The larger
the possibilities, the more time it will take
hackers to guess the cookie/user id of users,
which increases security.

7. Sensitive Information
Disclosure

robots.txt

Info disclosure cont...
Information disclosure is when a website
unintentionally reveals sensitive information to
its users. Depending on the context, websites
may leak all kinds of information to a potential
attacker, including:

 Data about other users, such as usernames or
financial information

 Sensitive commercial or business data
 Technical details about the website and its

infrastructure

Info disclosure cont...

 The robots.txt is used to give instructions to web robots,
such as search engine crawlers, about locations within the
web site that robots are allowed, or not allowed, to crawl
and index.

 The presence of the robots.txt does not in itself present
any kind of security vulnerability. However, it is often used
to identify restricted or private areas of a site's contents.
The information in the file may therefore help an attacker
to map out the site's contents, especially if some of the
locations identified are not linked from elsewhere in the
site. If the application relies on robots.txt to protect access
to these areas, and does not enforce proper access
control over them, then this presents a serious
vulnerability.

END

DSC Cyber Division

 DSC Cyber DSC Cyber DSC Cyber DSC Cyber

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

