

Session 1.3

DSC CYBER SECURITY DSC CYBER SECURITY

SESSION 1.3

 @Osir @Steve

@Infosecgirlpeshy @D_captainkenya

Prerequisites

Web Application Security:
 Common Vulnerabilities

● Insecure CAPTCHA Bypass
● Command injection(RCE)
● Unrestricted File Upload
● Local File Inclusion (LFI)
● Remote file inclusion (RFI)
● Content Security Policy(CSP) Bypass
● Insecure Direct Object Referencing

Disclaimer

 This session may contain presentations of
potentially damaging materials.

 The authors at DSC_Cyber will not be held
responsible for any misuse of information
presented here.

 Any actions or activities related to the material
contained within this session are solely your
responsibility.

1. Insecure CAPTCHA bypass

● CAPTCHA(Computer Automated Public Turing test to tell
Computers and Humans Apart) is used to determine whether
or not the user is human.

● No computer program can read distorted text as well as
humans can, so bots cannot navigate sites protected by
CAPTCHAs.

● CAPTCHAs are used to protect sensitive functionality from
automated bots.

● Such functionality includes user registration and changes,
password changes, and posting content.

● This provides limited protection from CSRF attacks as well as
automated bot guessing

1. Insecure CAPTCHA bypass

Uses:
● Protecting against authentication related attacks.
● Avoiding SPAM and DOS.
● Protection against bots that do data mining.

» Can be bypassed due to weaknesses in design
and implementation

1. Insecure CAPTCHA bypass

1. Insecure CAPTCHA bypass

REMEDIATION
● CAPTCHA protection is an ineffective security

mechanism and should be perceived as a "rate
limiting" protection only!

» Rate limiting is a strategy for limiting network
traffic. It puts a cap on how often someone can
repeat an action within a certain timeframe – for
instance, trying to log in to an account.

2. Command Injection

● OS command injection (shell injection) is a
vulnerability that allows an attacker to execute
arbitrary operating system (OS) commands on the
server that is running an application, and typically
fully compromise the application and all its data.

● An attacker can leverage an OS command injection
vulnerability to compromise other parts of the
hosting infrastructure, exploiting trust relationships
to pivot the attack to other systems within the
organization.

2. Command Injection

2. Command Injection

REMEDIATION
● The most effective way to prevent OS command injection

vulnerabilities is to never call out OS commands from
application-layer code.

● If it is unavoidable to call out to OS commands with user-
supplied input, then strong input validation must be
performed.
Some examples of effective validation include:

● Validating against a whitelist of permitted values.
● Validating that the input is a number.
● Validating that the input contains only alphanumeric

characters, no other syntax or whitespace.

3. File Upload

File upload vulnerabilities are when a web server
allows users to upload files to its filesystem without
sufficiently validating things like their name, type,
contents, or size.

● Failing to properly enforce restrictions on uploads
could mean that even a basic image upload
function can be used to upload arbitrary and
potentially dangerous files instead.

● This could even include server-side script files that
enable remote code execution.

3. File Upload

3. File Upload

REMEDIATION
● Check the file extension against a whitelist of permitted

extensions rather than a blacklist of prohibited ones. It's much
easier to guess which extensions you might want to allow than it
is to guess which ones an attacker might try to upload.

● Make sure the filename doesn't contain any substrings that may
be interpreted as a directory or a traversal sequence (../).

● Rename uploaded files to avoid collisions that may cause
existing files to be overwritten.

● Do not upload files to the server's permanent filesystem until
they have been fully validated.

● As much as possible, use an established framework for
preprocessing file uploads rather than attempting to write your
own validation mechanisms.

4. File Inclusion

This vulnerability allows an attacker to include a file,
usually exploiting a “dynamic file inclusion” mechanism
implemented in the target application. The vulnerability
occurs due to the use of user-supplied input without
proper validation.
This can lead to something as outputting the contents of
the file, but depending on the severity, it can also lead to:

● Code execution on the web server
● Client-side code execution such as cross site scripting

(XSS)
● Denial of Service (DoS)
● Sensitive Information Disclosure

4. File Inclusion

a) Local file inclusion(LFI)
● LFI is the process of including files, that are already

locally present on the server, through the exploiting
of vulnerable inclusion procedures implemented in
the application.

● It occurs, for example, when a page receives, as
input, the path to the file that has to be included
and this input is not properly sanitized, allowing
directory traversal characters (such as dot-dot-
slash) to be injected.

4. File Inclusion

4. File Inclusion

b) Remote file inclusion(RFI)
● RFI is the process of including remote files through

the exploiting of vulnerable inclusion procedures
implemented in the application.

● This vulnerability occurs, for example, when a page
receives, as input, the path to the file that has to be
included and this input is not properly sanitized,
allowing external URL to be injected.

4. File Inclusion

b) Remote file inclusion(RFI)

4. File Inclusion

REMEDIATION
● The most effective solution to avoid passing user-

submitted input to any filesystem/framework API.
● If this is not possible the application can maintain

an allow list of files, that may be included by the
page, and then use an identifier (for example the
index number) to access to the selected file.

● Any request containing an invalid identifier has to
be rejected.

5. Content Security Policy
(CSP)Bypass

Content Security Policy is a built-in browser
technology which helps protect from attacks such
as cross-site scripting (XSS).

● It is used to define where scripts and other
resources(static) can be safely loaded or executed
from.
For Example:

● Content-Security-policy: default-src 'self'; img-src
'self' allowed-website.com; style-src 'self';

● An attacker can bypass CSP and exploit a Cross-
site Scripting vulnerability successfully.

5. Content Security Policy
(CSP)Bypass

5. Content Security Policy
(CSP)Bypass

REMEDIATION
Content-Security-Policy: script-src https://dsc.ru
'unsafe-inline' 'unsafe-eval' data *;
By using ’unsafe-eval’, you allow the use of string
evaluation functions like eval.
By using ’unsafe-inline’, you allow the execution of
inline scripts

● Remove unsafe-eval, unsafe-inline and wildcards
from your CSP directives.

6. Insecure Direct Object
Referencing(IDOR)

 An IDOR occurs when a developer exposes a
reference to an internal implementation
object, such as a file, directory, database
record, or key, as a URL or form parameter.

 An attacker can manipulate direct object
references to access other objects without
authorization, unless an access control check
is in place.

6. Insecure Direct Object
Referencing(IDOR)

6. Insecure Direct Object
Referencing(IDOR)

REMEDIATION
 Most frameworks now come with built-in methods to

avoid these vulnerabilities. Use these built-in tools
to improve the security of the web app.

 Ensure no data is transmitted in cleartext. Users
can hash passwords or ids and then transmit the
data.

 Ensure no ids are generated iteratively, rather they
should be generated randomly. The larger the
possibilities, the more time it will take hackers to
guess the cookie/user id of users, which increases
security.

Session 1.3

DSC CYBER SECURITY DSC CYBER SECURITY

@Osir @Steve
@Infosecgirlpeshy @D_CAPTAINKENYA

THE END THE END

 S a at y s fe online

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

